Soal Discussion Text Kelas Xii
contoh soal tentang discussion text
1. contoh soal tentang discussion text
Jawaban:
. From the text, we can conclude that ….
A. everyone doesn’t agree with a family limitation
B. the government doesn’t support birth control
C. the religious group agree of using artificial contraception
D. some women must not pregnant because of health reason
E. young couples don’t want to have many children because they are very busy
Penjelasan:
biasanya hrs baca tex dulu baru jawab
semoga membantu kak :))
2. contoh discussion text tentang Pembagian kelas IPS dan IPA di SMA
Mr.Andri :Hello Everyone,Myname is Mr.Andri Today I'mgonna Divide The Class for the ScienceClass (IPA)And Science Class (IPS),
Everyone:Yes,Sir!!
Mr.Andri :Okay So for Ips Class Is Sarah,Somi,Rania,Nia,Ron,Jaden,Etc (Dll),Now For The name I said Go to Ips Class Please.
Mr.Andri :And For IPA class Is Sari,Lorraine,Jane,Sissyl,Rani,Rahmat,Cindy,Garry,etc (Dll),Pleasefor the name I said Go to IPA class,Thanks
Mr.Andri :So that's all from me this morning, thank you
SEKIAN DARI SAYA TERIMAKASIH!!3. 5 soal essay tentang discussion text dan jawaban nya?
What is the topic of the passage?
What is the main topic of the passage?
The text tell us about …
The passage is about …
The text mainly talks about …
(maaf ya tidak bisa memberi jawaban karena teks diskusinya tidak diterangkan)
4. soal integral kelas xii
PERTANYAAN
1. ∫ (4x+2) (5 - 1/2 x) dx = ...
2. Diketahui F'(x) = 3x^2+4x-5 dan F(2) = 18. Jika F'(x) adalah turunan pertama F(x), maka persamaan F(x)
JAWABAN
1) ∫ (4x+2) (5 - ½x) dx
= ∫ (-2x² + 19x + 10) dx
= -(2/3)x³ + (19/2)x² + 10x + c
2) F'(x) = 3x^2+4x-5
F(x) = ∫ (3x² + 4x – 5) dx
= x³ + 2x – 5x + c
F(2) = 2³ + 2(2) – 5(2) + c = 18
8 + 4 – 10 + c = 18
c = 16
F(x) = x³ + 2x – 5x + 16
yang mananyaa yg mau dikerjain?-__-
kalo masalah integral itu invers dari turunan laah..
seperti [tex] \int\limits^a_b f({x}) \ dx = F(x) + C[/tex]
f'x= f(x)
Jadi kalo masalah integral sin cos ituu, pakai rumus integral fungsi trigonometri:
saya beri satu contoh saja yaah..
integral sinx dx = -cosx+C
[tex] \int\limits^ \frac{3 \pi }{4} _b(2-4sin ^{2} {x}) \, dx = 2-4 sin^{2} x = 2-4(1- \frac{cos2x}{2}) = 2- 2(1-cos2x) = 2cos2x[/tex]
ituu saja yaa contohnyaa
5. contoh discussion text ?
1. The Pros and Cons of National Exam. The existence of national exam which determines whether students succeed or not for 3 years in high school and deserve to hold graduating certificate extremely raises pros and cons. Some agree to the existence of national exam for high school students. On the other hand, a lot of people disagree to the existence of national exam
2. The Pro and Con Of Giving Childern Homework. This is another example of discussion text. The pros and cons of children homework. Some parents agree that children who go to formal school should be given a homework. It stimulate them to study at home. However, some of parents disagree. children who go to school and have spent all morning in school should have a little free time at their home
6. soal limitkelas XII
[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]
PEMBAHASANNilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :
[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]
Operasi pada limit adalah sebagai berikut :
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]
[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]
[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]
Rumus untuk limit fungsi trigonometri :
[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]
.
DIKETAHUI[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=[/tex]
.
DITANYATentukan nilai limitnya.
.
PENYELESAIANCek dengan substitusi langsung.
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{\left ( \frac{\pi}{4}-\frac{\pi}{4} \right )sin\left ( 3(\frac{\pi}{4})-\frac{3\pi}{4} \right )}{2(1-sin2(\frac{\pi}{4}))}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{0}{0}[/tex]
.
Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :
[tex]sin\theta=cos\left ( \frac{\pi}{2}-\theta \right )[/tex]
[tex]cos(-\theta)=cos\theta[/tex]
[tex]cos2\theta=1-2sin^2\theta[/tex]
.
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos[-(2x-\frac{\pi}{2})]}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos(2x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-cos2(x-\frac{\pi}{4})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{1-[1-2sin^2(x-\frac{\pi}{4})]}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{2}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin3\left ( x-\frac{\pi}{4} \right )}{2sin^2(x-\frac{\pi}{4})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}\times\lim_{x \to \frac{\pi}{4}} \frac{sin3\left ( x-\frac{\pi}{4} \right )}{sin(x-\frac{\pi}{4})}[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{1}{4}\times1\times3[/tex]
[tex]\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}=\frac{3}{4}[/tex]
.
KESIMPULAN[tex]Nilai~dari~\lim_{x \to \frac{\pi}{4}} \frac{\left ( x-\frac{\pi}{4} \right )sin\left ( 3x-\frac{3\pi}{4} \right )}{2(1-sin2x)}~adalah~\boldsymbol{\frac{3}{4}}.[/tex]
.
PELAJARI LEBIH LANJUTLimit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421Limit trigonometri : https://brainly.co.id/tugas/30243881.
DETAIL JAWABANKelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8
Kata Kunci : limit, fungsi, trigonometri
7. soal matematika kelas XII
Semoga membantu......
8. persamaan dari explanation text dan discussion text
sama sama membahas suatu masalah atau hal
9. Soal tentang vektor kelas XII
p = (-2, -1, -3)
q = (3, -2, 1)
|p| = √[(-2)² + (-1)² + (-3)²]
= √[4+1+9]
= √14
|q| = √[(3)² + (-2)² + (1)²]
= √[9+4+1]
= √14
p · q = (-2)(3) + (-1)(-2) + (-3)(1)
= -6 + 2 - 3
= -7
misalkan α adalah sudut antar p dan q
besar sudut antara vektor p dan q adalah
p · q = |p| |q| . cos α
-7 = (√14)(√14) . cos α
-7 = 14 . cos α
cos α = -7/14
cos α = -1/2
α = 4π/6 , 8π/6
α = 120° , 240°
10. soal limitkelas XII
[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]
PEMBAHASANNilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :
[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]
Operasi pada limit adalah sebagai berikut :
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]
[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]
[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]
Rumus untuk limit fungsi trigonometri :
[tex]\lim_{x \to 0} \frac{sinax}{bx}=\lim_{x \to 0} \frac{tanax}{bx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to 0} \frac{ax}{sinbx}=\lim_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b}[/tex]
[tex]\lim_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim_{x \to a} \frac{tan(x-a)}{(x-a)}=1[/tex]
.
DIKETAHUI[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=[/tex]
.
DITANYATentukan nilai limitnya.
.
PENYELESAIANCek dengan substitusi langsung.
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4(\frac{\pi}{2}-\pi)cos^2(\frac{\pi}{2})}{\pi(\pi-2(\frac{\pi}{2}))tan(\frac{\pi}{2}-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{0}{0}[/tex]
.
Karena substitusi langsung menghasilkan bentuk tak tentu, maka kita perlu ubah bentuknya terlebih dahulu dengan menggunakan identitas :
[tex]cos\theta=sin\left ( \frac{\pi}{2}-\theta \right )[/tex]
[tex]sin(-\theta)=-sin\theta[/tex]
.
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(\frac{\pi}{2}-x)}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[sin-(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)[-sin(x-\frac{\pi}{2})]^2}{(\pi-2x)tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=\frac{4}{\pi} \lim_{x \to \frac{\pi}{2}} \frac{(x-\pi)sin^2(x-\frac{\pi}{2})}{-2(x-\frac{\pi}{2})tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi} \lim_{x \to \frac{\pi}{2}} (x-\pi)\times \lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{(x-\frac{\pi}{2})}\times\lim_{x \to \frac{\pi}{2}} \frac{sin(x-\frac{\pi}{2})}{tan(x-\frac{\pi}{2})}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times(\frac{\pi}{2}-\pi)\times1\times1[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=-\frac{2}{\pi}\times-\frac{\pi}{2}[/tex]
[tex]\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}=1[/tex]
.
KESIMPULAN[tex]Nilai~dari~\lim_{x \to \frac{\pi}{2}} \frac{4(x-\pi)cos^2x}{\pi(\pi-2x)tan(x-\frac{\pi}{2})}~adalah~\boldsymbol{1}.[/tex]
.
PELAJARI LEBIH LANJUTLimit trigonoemtri : https://brainly.co.id/tugas/32389794Limit trigonometri : https://brainly.co.id/tugas/30308496Limit trgonometri : https://brainly.co.id/tugas/30292421.
DETAIL JAWABANKelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8
Kata Kunci : limit, fungsi, trigonometri.
11. text discussion television
The question is not connected, what television is the text discussion?
12. soal limit tak hinggakelas XII
Jawaban:
Jawabannya D.2
.
.
semoga membantu
13. Soal matriks kelas XII
biasa kan mikir dan belajar terus dengan giat
14. Apa itu Discussion text
DiscussionText merupakan salah satu jenisteks dalam materi pembelajaranbahasa inggris yang berfokus pada Pro dan Kontra.
15. soal limit tak hinggakelas XII
[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]
PEMBAHASANNilai limit dari suatu fungsi dapat kita cari dengan langsung mensubstitusikan nilai x ke dalam fungsinya. Jika hasilnya ada maka berarti itulah nilai limitnya.
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
Akan tetapi jika hasil substitusi langsung menghasilkan bentuk tak tentu [tex]\frac{0}{0}~atau~\frac{\infty}{\infty}[/tex] maka harus dilakukan manipulasi aljabar atau menggunakan aturan l'hospital. Dengan menggunakan aturan l'hospital, nilai limit fungsi dapat dicari dengan rumus :
[tex]\lim_{x \to c} \frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)},~~~~dengan~f'(c),~g'(c)\neq 0[/tex]
Operasi pada limit adalah sebagai berikut :
[tex]\lim_{x \to c} f(x)=f(c)[/tex]
[tex]\lim_{x \to c} kf(x)=k\lim_{x \to c} f(x)[/tex]
[tex]\lim_{x \to c} [f(x)\pm g(x)]=\lim_{x \to c} f(x)\pm\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} [f(x)\times g(x)]=\lim_{x \to c} f(x)\times\lim_{x \to c} g(x)[/tex]
[tex]\lim_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}[/tex]
[tex]\lim_{x \to c} \left [ f(x) \right ]^n=\left [ \lim_{x \to c} f(x) \right ]^n[/tex]
.
DIKETAHUI[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=[/tex]
.
DITANYATentukan nilai limitnya.
.
PENYELESAIAN[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{5^x}{3^x+2^x}\times\frac{\frac{1}{3^x}}{\frac{1}{3^x}}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}= \lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]
Perhatikan bahwa [tex]\frac{5}{3}>0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju ∞.
Sedangkan [tex]\frac{2}{3}< 0[/tex] sehingga jika kita pangkatkan dengan nilai x yang besar hasilnya akan semakin menuju 0.
Maka :
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\lim_{x \to \infty} \frac{\left ( \frac{5}{3} \right )^x}{1+\left ( \frac{2}{3} \right )^x}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\lim_{x \to \infty} \left ( \frac{5}{3} \right )^x}{\lim_{x \to \infty} 1+\left ( \frac{2}{3} \right )^x}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\frac{\infty}{1+0}[/tex]
[tex]\lim_{x \to \infty} \frac{5^x}{3^x+2^x}=\infty[/tex]
KESIMPULAN[tex]Hasil~dari~ \lim_{x \to \infty} \frac{5^x}{3^x+2^x}~adalah~\boldsymbol{E.\infty}[/tex]
.
PELAJARI LEBIH LANJUTLimit tak hingga : https://brainly.co.id/tugas/32409886Limit tak hingga : https://brainly.co.id/tugas/28942347Limit fungsi : https://brainly.co.id/tugas/30308496.
DETAIL JAWABANKelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8
Kata Kunci : limit, fungsi, tak hingga.
Posting Komentar untuk "Soal Discussion Text Kelas Xii"